As web application development evolved, usage of JavaScript skyrocketed. To address the variance in support of JavaScript, HTML across the different browser versions libraries like jQuery evolved to offer a layer of abstraction for the web developers, so that they can just focus on writing their application logic instead of worrying about the vagaries of browser support. Single-page web applications started to become the norm as more code started to be written in JavaScript than ever before. JavaScript has also become the language of choice to deliver applications that run on desktop browsers and mobile phones. So web applications written in JavaScript are now in the run-in environments with huge variations in parameters such as device CPU & memory, network bandwidth, browser support.
Powering this scale of growth needed the emergence of more JavaScript frameworks that provide abstractions over this diversity of hosting environments packaging up the best practices in loading times, memory usage, and responsiveness. There is simply no way to deliver a high-quality user experience without basing application development on top of these quickly evolving JavaScript frameworks such as Angular. Leave it to the smart folks in the Angular team to worry about keeping up with the evolving web application requirements while the application developers’ energies are productively engaged with solving the business problem at hand.
WaveMaker is the only Rapid application development platform with open-standards-based code generation using Angular & Spring. Our 110+ UI components are implemented as Angular components built into libraries. When the user starts building a page in WaveMaker, the product starts generating Angular code in the background. The generated code imports the UI components user dropped into the page and then wires them up using data binding.
The code generated by WaveMaker is fully customizable, allowing developers to write custom business logic in javascript. Using WaveMaker our customers have built a line of business apps, customer-facing portals, and mobile applications in several verticals such as insurance, banking, manufacturing, healthcare, retail, etc.
WaveMaker offers ready to use and well-tested component library and a visual development environment to drag-n-drop these components to design a page. WaveMaker abstracts away all the Angular concepts like routing, scoping, security (auth guards), i18n, and service integration with REST, SOAP & databases, etc. The developer focuses on building application capabilities like user interface & interaction, representing data with widgets like Forms, Table, Lists or Charts, etc., defining access control for both UI components and APIs.
WaveMaker UI components built using Angular are device responsive and designed to suit mobile-first apps. WaveMaker platform enables hybrid mobile application development, using device-native capabilities through Cordova combined with the power of responsive Angular widgets.
While WaveMaker has 110+ UI components and this list is ever-growing, we realize that teams may want to build reusable UI components to further decrease the time it takes to build applications in WaveMaker. WaveMaker supports importing reusable JavaScript components that are packaged as Angular.io elements, web components, or jQuery widgets. Using a WaveMaker feature called “prefabs” existing UI components can be imported and these will stay accessible alongside the standard WaveMaker UI components and can be easily dragged and dropped onto the page that is getting developed.
When users develop an app, WaveMaker generates application metadata that does not depend on a specific Angular version. From the metadata the Angular code is generated by the platform, keeping the app agnostic of any specific version of Angular. This means that the app will stay using the latest versions of Angular as WaveMaker rolls out the support for those versions. By simply upgrading WaveMaker versions the application will start reaping the benefits of staying on the latest version of Angular. There is no need to spend time in big stack upgrade projects that consume the productivity of your team.
One of the benefits of Angular is that the framework comes with tools that support very advanced build strategies that reduce your application’s footprint. This is very important to the application's load time as the amount of JavaScript that is getting downloaded from the cloud uses up critical resources such as network bandwidth, device CPU. Smaller the application footprint, the faster the app loads. When you attempt to deploy the WaveMaker app, we internally use ng build --prod mode with tree shaking enabled so that each page includes only the WaveMaker UI components that it uses and not all of the library. Essentially, the WaveMaker platform takes care of all the build optimizations and keeps the application footprint as optimal as possible to give better performance and first-time load experience.
WaveMaker builds which are triggered when the Deploy button is clicked can produce different bundles for frontend, backend code enabling the frontend code to be deployed on a CDN. Each of the resources the page depends on includes a fingerprint that represents the contents of the resource. This means that CDN that is serving static assets can be configured to set cache headers allowing browsers to cache the content and further optimizing the load times for returning users. Because of the content-based fingerprinting incremental releases of the WaveMaker application will only link to newer static assets if there was a change. In most cases, WaveMaker UI components for a page are already in the browser’s cache.
Docker and container technology are well-known in Enterprise today. The simplified view of containers as miniaturization of VMs seems to yield benefits of portability and faster startup times. But what is less apparent is the benefit they bring to the business. To understand this, we must first look at various scenarios in which the technology can be applied. Just as Java technology applied to IoT or Android is different from that applied to Enterprise software, the benefits realized from any technology, along with its challenges, vary depending upon the context of its application.
In this post, we'll explore a couple of contexts in which container technology can be applied and how its benefits and challenges differ.
This is the most common context. Here, containers are adopted by IT as a form of software packaging and distribution. Typically, IT expects to be provided with containers instead of application binaries by the development teams. So containers act as a sort of black box that contains all the software and its dependencies. Developers require to package and deliver a set of container images along with relevant configuration files--that describe how these containers may talk to each other (ports), what storage needs they have (volumes), and so on. From an IT stand-point this creates a homogenous black-box approach to deploying pretty much anything in the Enterprise, and this makes it especially suited to large, data-center scale deployments.
In this condition, the application and adoption of container technology is largely IT-oriented. It favours IT over developers as the latter need to do a lot of heavy-lifting--converting their app binaries and dependencies into container images and pushing them into a container registry. Most container management platforms out there focus on providing the right tools to IT to pull those images from a registry and provision them on a set of machines (physical or virtual). The focus of such platforms is purely on run-time aspects, such as container orchestration, with very little context of the app or the app stack itself.
The key benefit of approaching container technology in this context is the optimization of infrastructure resources. Platforms like Kubernetes were born out of such a need to optimize infrastructure usage at very large scales (say, millions of containers). However, there are two points of caution. One, this may result in further isolation between IT and developers causing more throw-the-problem-over-the-wall scenarios. No matter how perfect the technology, experience tells us that more de-siloed communication and collaboration is the approach towards hassle-free and rapid delivery of applications in production. Hence, “DevOps”. Two, it is questionable whether all applications are suited to such a black-box hands-off approach between developers and IT. Also, the effectiveness of this approach in real usage remains to be seen.
In this case, application delivery teams adopt containers with the primary goal of speeding up the time-to-market for their apps or products. Using the rapid portability advantages of containers, development and DevOps engineers put together the app composition, wire together various services/ micro-services--by use of service discovery--and set up configurations for various environments. This context of container usage is more app-focused and less infrastructure-focused (though the resource optimization benefits of containers accrue over time as more apps adopt containers for delivery). Also, the approach is both design-time and run-time focused and favors the development and DevOps teams over IT. It seeks to make development teams self-sufficient in getting their apps into the hands of their users.
Few platforms focus on these aspects that provide developers the required tools to automate the generation of container images, service versioning, and configuration for multiple environments of the app. The most important benefits of such platforms are rapid containerization of existing apps, rapid provisioning and configuration, and easy promotion of apps from one environment to another. Orchestration takes care of scalability and high-availability requirements, and these are configured entirely from an application perspective.
The greatest benefit for enterprises using containers for rapid application delivery is time-to-market for their apps rather than infrastructure optimization. As the market for containers matures further, expect to see a shift in focus towards this direction.
Wavemaker HyScale is app containerization and container management platform that takes the view that an application’s time-to-market is a far more important focus for Enterprise business than infra-resource optimization. The platform is built ground-up with the application in mind and every aspect is designed around the app's stack, the app's services, and the app's configuration. Hence there are very few (if any) aspects of the platform that require users to deal with the underlying container technology aspects. In fact, HyScale makes it very easy for users to adopt the platform--and thereby adopt containers--without even requiring to know Docker, or use any Docker commands or even any kind of build/ deploy YAML configuration files.
HyScale allows development teams to stay focused on the app and become self-servicing at the same time, allowing them to rapidly deploy and iterate over their app.
Contact us to know more about how WaveMaker HyScale can empower your organization to achieve faster time-to-market with containers and without having to re-skill or re-tool you development workflows.